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Methods



Motivation to Methods

• Real world programs often are large and complex

• Easier to manage in smaller pieces, in the case of Java, 

methods

• Example of a “divide and conquer” strategy

• Each method solves one small part of the entire 

problem

• Java standard library methods (built-in)

• Have already been using these: println(), nextInt(), 

pow()



Reasons for Using Methods 

(Modularization)

• Divide-and-Conquer: Build Java programs from small, simple 

pieces.

• Software Reusability: Use existing methods as building blocks to 

create new Java programs.

• Avoid repeating Code

• Easier to Debug: Each method can be debugged separately.

• Easier to Maintain: Can make changes to a specific method rather 

than the whole Java program.



Basic Idea of a Method 

• Consider mathematical functions:

y = f(x), where f(x) = ?

• Need some definition for f(x)

• defines the value of f(x) for any value of x

• f(x) requires an argument, or parameter, x

• f(x) produces a value that is assigned to y

• Can use this method with any legal value substituted for x 

- e.g. y = f(5)

• Java methods work the same way

• Of course, we must follow the Java syntax rule
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Code Reuse

System.out.println(...)

nextInt()  

nextLong()

nextDouble()

You have used all of these multiple times.

These are all methods.
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Method Terminology

• We can define a method

• Make it available to the rest of the  

program

• We can call a method

• Execute the subprogram



Elements of a Java Method

Method Definition:

1- Declares the “signature” of the method

Consists of return data type, method name, input 

parameters, Java operations

2- Reusable source code that can be called 

whenever needed. 

3 - A sequence of instructions (code) that is 

packaged into a unit that can be reused.

Method Call:

1. Actually makes use of the method 

2. Real values are specified for arguments
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Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

One input, no outputs (cannot assign to a variable).

Math.pow(2,3);

Two inputs, one output.
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inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

No inputs, one output.

inputScanner.nextDouble();

No inputs, one output.
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Calling Methods

Method 1 Method 2

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was  

called from

Execution
Calls

Returns





Defining a Method

Easiest to see with real code.

Example:
Return42.java
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Method Parameters

foo(

7

Parameters are passed on a call,  

copying their values into the called method.

public static int foo(int x) {  

return x + 1; x = 7

}

int a = );

8
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Example:
MultParameters3.java
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Method Definition  
General Form

public static  

returnType

methodName(parameter_list) {

...

return expression;

}

Magic

Type of value produced

Name given to  
method;same naming  

rules as variables

Inputs to
method
(int x)

Method ends  
here,evaluates

expression,and

produces its result



Methods which  
Produce noValues
Methods which produce no values  

have a void return type

Example:
ReturnNothing.java



Aside: Expressions vs.

Statements

• Expressions return values (e.g., 1 + 2)

• Statements do not return values (e.g.,
System.out.println("Hello"))

• Statements are separated with semicolon (;)

System.out.println("Hello");  

System.out.println("Goodbye");
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main Method

main is just another method.

main serves as the entry point to your program.

public static  

void

main(String[] args) {

...

}


