
COMP 110/L Lecture 5
Maryam Jalali

Slides adapted from Dr. Kyle Dewey

Outlines

• Methods

• Defining methods

• Calling methods

Methods

Motivation to Methods

• Real world programs often are large and complex

• Easier to manage in smaller pieces, in the case of Java,

methods

• Example of a “divide and conquer” strategy

• Each method solves one small part of the entire

problem

• Java standard library methods (built-in)

• Have already been using these: println(), nextInt(),

pow()

Reasons for Using Methods

(Modularization)

• Divide-and-Conquer: Build Java programs from small, simple

pieces.

• Software Reusability: Use existing methods as building blocks to

create new Java programs.

• Avoid repeating Code

• Easier to Debug: Each method can be debugged separately.

• Easier to Maintain: Can make changes to a specific method rather

than the whole Java program.

Basic Idea of a Method

• Consider mathematical functions:

y = f(x), where f(x) = ?

• Need some definition for f(x)

• defines the value of f(x) for any value of x

• f(x) requires an argument, or parameter, x

• f(x) produces a value that is assigned to y

• Can use this method with any legal value substituted for x

- e.g. y = f(5)

• Java methods work the same way

• Of course, we must follow the Java syntax rule

Motivation

Program

Input

Output

Subprogram 1

Input

Subprogram 2

Subprogram 3

Motivation

Subprogram 4 Output

Code Reuse

Code Reuse

System.out.println(...)

Code Reuse

System.out.println(...)

nextInt()

Code Reuse

System.out.println(...)

nextInt()

nextLong()

Code Reuse

System.out.println(...)

nextInt()

nextLong()

nextDouble()

Code Reuse

System.out.println(...)

nextInt()

nextLong()

nextDouble()

You have used all of these multiple times.

Code Reuse

System.out.println(...)

nextInt()

nextLong()

nextDouble()

You have used all of these multiple times.

These are all methods.

Methods
Distinct subprograms.

Methods

Subprogram 1

Distinct subprograms.

Input

Subprogram 2

Subprogram 3

Subprogram 4 Output

Methods

Method 1

Distinct subprograms.

Input

Method 2

Method 3

Method 4 Output

Method Terminology

• We can define a method

• Make it available to the rest of the

program

• We can call a method

• Execute the subprogram

Elements of a Java Method

Method Definition:

1- Declares the “signature” of the method

Consists of return data type, method name, input

parameters, Java operations

2- Reusable source code that can be called

whenever needed.

3 - A sequence of instructions (code) that is

packaged into a unit that can be reused.

Method Call:

1. Actually makes use of the method

2. Real values are specified for arguments

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

One input, no outputs (cannot assign to a variable).

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

One input, no outputs (cannot assign to a variable).

Math.pow(2,3);

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

One input, no outputs (cannot assign to a variable).

Math.pow(2,3);

Two inputs, one output.

inputScanner.nextInt();

inputScanner.nextInt();

No inputs, one output.

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

No inputs, one output.

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

No inputs, one output.

inputScanner.nextDouble();

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

No inputs, one output.

inputScanner.nextDouble();

No inputs, one output.

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was

called from

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was

called from

Method 1 Method 2

Calling Methods

Method 1 Method 2

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was

called from

Execution

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was

called from

Method 1 Method 2
Calls

Execution

Calling Methods

Method 1 Method 2

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was

called from

Execution
Calls

Calling Methods

Method 1 Method 2

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was

called from

Execution
Calls

Returns

Calling Methods

Method 1 Method 2

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was

called from

Execution
Calls

Returns

Defining a Method

Easiest to see with real code.

Example:
Return42.java

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {

return x + 1;

}

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {

return x + 1;

}

int a = foo(7);

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {

return x + 1;

}

int a = foo(7);

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {

return x + 1; x = 7

}

int a = foo(7);

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {

return x + 1; x = 7

}

int a = foo(7);

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {

return x + 1; x = 7

}

int a = foo(7);

Method Parameters

foo(

7

Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {

return x + 1; x = 7

}

int a =);

8

Example:
ReturnParameter.java

Example:
MultParameters1.java

Example:
MultParameters2.java

Example:
MultParameters3.java

Method Definition
General Form

public static

returnType

methodName(parameter_list) {

...

return expression;

}

Method Definition
General Form

public static

returnType

methodName(parameter_list) {

...

return expression;

}

Magic

Method Definition
General Form

public static

returnType

methodName(parameter_list) {

...

return expression;

}

Magic

Type of value produced

Method Definition
General Form

public static

returnType

Magic

Type of value produced
methodName(parameter_list) {

...

return expression;

}

Name given to
method;same naming

rules as variables

Method Definition
General Form

public static

returnType

methodName(parameter_list) {

...

return expression;

}

Magic

Type of value produced

Name given to
method;same naming

rules as variables

Inputs to
method
(int x)

Method Definition
General Form

public static

returnType

methodName(parameter_list) {

...

return expression;

}

Magic

Type of value produced

Name given to
method;same naming

rules as variables

Inputs to
method
(int x)

Method ends
here,evaluates

expression,and

produces its result

Methods which
Produce noValues
Methods which produce no values

have a void return type

Example:
ReturnNothing.java

Aside: Expressions vs.

Statements

• Expressions return values (e.g., 1 + 2)

• Statements do not return values (e.g.,
System.out.println("Hello"))

• Statements are separated with semicolon (;)

System.out.println("Hello");

System.out.println("Goodbye");

main Method

main is just another method.

main serves as the entry point to your program.

main Method

main is just another method.

main serves as the entry point to your program.

public static

void

main(String[] args) {

...

}

